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Fig. 1: The implicit uncertainty visualization pipeline. Given these samples, which class of points is likely to have a higher average
value, the orange or purple class? Humans are capable of estimating aggregate statistics from collections of objects. Viewer
confidence in these perceptual estimations is modulated by many properties that are relevant for uncertainty quantification, such
as difference in means and variance. Thus, without the explicit visualization of uncertainty information, viewers can both make
decisions about data as well as estimate the uncertainty present in such decisions.

Abstract— In this work we present a brief argument for implicit uncertainty visualization. Instead of building complex models of

quantifications of uncertainty in data, we rely on how viewers perceive aggregate information in visualizations to act as a proxy for

these models. This perceptual uncertainty can take into account outliers and trends which might otherwise be difficult to quantify.

Implicit uncertainty visualization also changes the design problem of how to visualize and communicate every relevant variable for

uncertainty to a potentially simpler one: how to encode the data itself to make the perceptual extraction of summary statistics as easy

as possible.

Index Terms—Uncertainty, perceptual psychology, visual statistics

1 INTRODUCTION

The visualization of uncertainty tacitly requires quantifying uncer-
tainty. This quantification can be as simple as an additional per-datum
confidence value, or as complex as a high dimensional model of error
across the entire dataset. There are severe consequences to perform-
ing this quantification incorrectly. If our quantification is too simplistic
then we may be blindsided by factors which are highly important for
our inferences but excluded from our initial calculations. If our quan-
tification is too complex we not only risk overfitting but also lose the
ability to fluently communicate data to users who may not have the
expertise in statistics to interpret our models. There are also design
considerations which defy easy answers: how do we unify the “data
map” (the data per se) and “uncertainty map” (the derived quantified
uncertainty) [9] in our visualizations?

In this position paper we argue that there exists a viable alternative
to the explicit visualization of quantified uncertainty: namely, implicit
uncertainty visualization, where designers rely on the perceptual and
cognitive uncertainty of viewers as a proxy for other forms of uncer-
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tainty modelings. Key to this approach is the capability of viewers
to estimate statistics of interest from visualizations of the underlying
data.

As a motivating example, assume with have a scatterplot with two
classes of sampled points. A viewer might compare the sample means
of the two classes, and use that comparison to drive an inference about
the two classes in the real world. We can compute various values (the
difference between sample means, variance, sample size, &c.) which
contribute to a model of uncertainty for this task. Designers might
choose which uncertainty models or relevant model variables to ex-
plicitly encode. For instance, a designer might choose to use dots
representing the sample mean, and error bars representing some un-
certainty about the spread of the means. However, viewers are ca-
pable of comparing sample means in scatterplots with high accuracy
without the designer explicitly encoding any information beyond the
points themselves [7]. Many of the variables which contribute to the
ease with which viewers extract these means are the same as those
which would contribute to explicit uncertainty quantification (for in-
stance difference in means, or the spread of the points). In effect the
viewer is in this case is being trusted to build their own uncertainty
model without the explicit intervention of the designer. Figure 1 visu-
ally illustrates this process.

At first glance this approach might seem counterintuitive or even
harmful: if we already know the statistics of interest, why not ex-
plicit visualize these statistics rather than rely on the viewer to esti-



mate the uncertainty? Aside from the practical problems of providing
distinct visual encodings for every single potentially useful statistic
or model, and the difficulty of communicating the meaning of some
of these more complex or esoteric values to the viewer, we believe
there are additional benefits to taking the implicit rather than explicit
approach. Some of these benefits are measurable through traditional
time and error evaluation, for instance the ability of viewers to over-
come insufficiently nuanced model building by, for instance, detecting
and ignoring outliers. Others benefits are more qualitative: viewers
might be more trusting of an uncertainty model if it is, in essence, a
model they constructed by themselves, rather than one presented by
the designer.

While naturally there are situations where the implicit approach to
visualizing uncertainty is not appropriate (for instance, if the data are
too large or complex for the human visual system to reliably estimate
the relevant statistics), we believe that:

1. Situations where designers can rely on implicit uncertainty vi-
sualization to communicate uncertainty are common. In many
cases we can rely on implicit uncertainty to perform just as well
as more traditional uncertainty visualization techniques.

2. Designers can design for implicit uncertainty, just as it is pos-
sible to design for other viewer responses such as serendipitous
discovery [10].

2 IMPLICIT UNCERTAINTY VISUALIZATION

Viewers have broad capabilities when it comes to statistical compar-
isons: with the proper encoding, viewers can compare means, detect
outliers, estimate trend, and calculate many other aggregate statistics
from visualizations [1, 6]. These capabilities are often rooted in basic
perceptual machinery in how we store information about collections of
visual objects [2]. This means that viewers can make use of aggregate
statistical information without explicit statistical knowledge.

In some cases visual inspection can be more sophisticated than
some statistical techniques. Anscombe’s quartet is a famous exam-
ple of datasets which have similar summary statistics, but which are
immediately visually recognizable as different. By in essence passing
off the problem of modeling information to the perceptual system, we
relieve the burden of having to design and communicate complicated
statistical models to viewers. This capacity for sophisticated model
building and pattern recognition can be exploited for decision-making
tasks. For instance “graphical inferences” can function as a sort of “vi-
sual t-test,” letting non-statisticians assess the presence and strength
of patterns that might be difficult to explain verbally or quantitatively
[12].

The accuracy with which viewers estimate aggregate information,
and (more importantly) the confidence they have in these estimates, is
modulated by many of the same factors as in uncertainty quantifica-
tion. For instance, the visual comparison of sample means is modu-
lated by (at least) variance and mean difference [5], as are quantitative
comparisons such as significance testing.

3 DESIGNING FOR IMPLICIT UNCERTAINTY

Not all visualizations equally support, or even afford, the estimation of
aggregate information (see [1] for a more thorough discussion of these
affordances). Deciding on what encoding to use to represent the data
in a way that viewers can employ implicit uncertainty visualization
requires many of the same weightings of factors and tasks analyses that
are part of more traditional uncertainty visualization. Through careful
experimental design, designers can measure how different variables
and encodings are connected to viewer confidence in decisions [3].

As implicit uncertainty visualization relies on perceptual rather than
statistical machinery, there is also the problem of perceptual and cog-
nitives biases which might skew judgments of uncertainty [11]. Even
if designers do not explicitly encode particular aggregate values rele-
vant to uncertainty, it might be necessary to make tweaks to the display
of the underlying data to assist in de-biasing (see [4] for an example
of such a tweak, or [8] for examples of how different visualizations
choices effect decision-making under uncertainty).

4 CONCLUSION

Implicit uncertainty visualization may have the appearance of inaction,
of doing nothing. However, we believe that choosing not to explicitly
encode uncertainty information is an informed choice, a strategy de-
signed for a specific class of datasets and tasks. Deciding to let viewers
bear the brunt of estimating their own certainty requires nuanced de-
signs; the choice of how to present data, even without adornment, can
create measurable differences in certainty.

The research project ahead of us is to delineate when we can trust
viewers to create their own uncertainty models, and when designers
must explicitly intervene. Already empirical efforts seem to indicate
that viewers of visualizations are good “visual statisticians” for a vari-
ety of estimation, comparison, and inferential tasks. Harnessing these
abilities offers an alternative to traditional uncertainty visualization
that avoids many of the major drawbacks in uncertainty quantification.
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