

Employing Model Reduction for Uncertainty Visualization in the Context of CO₂ Storage Simulation Marcel Hlawatsch, Sergey Oladyshkin, Daniel Weiskopf **University of Stuttgart**

Problem setting - underground CO₂ storage

- Decision making
 - Controversial
 - Impact vs risks
 - Public opinion
- Experiments
 - difficult, expensive
 - only small scale, e.g., porosity tests
- Simulations are important

Simulation

- Modeling of storage site
 hard to obtain real site conditions
- Uncertain parameters
 - Boundary pressure
 - Barriers
 - •
- Monte Carlo approach

Uncertainty visualization

- Ensemble data
 - Detailed analysis
 - Large, visual overload
- Stochastic data (mean, std. dev. etc.)
 - Smaller data, less visual load
 - Aggregated
- Steering
 - Interactivity on model level
 - Fast simulation, often inaccurate
 - Aggregation expensive
- Possible to get all good properties?
- Stochastic model reduction!

Simulation

Dataset

Visualization

Polynomial chaos expansion (PCE)

- Approximation of model dependence on input
- Original PCE Gaussian distribution of input [Wiener 1938]
- Arbitrary polynomial chaos (aPC) [Oladyshkin 2011]
 - Generalization
 - Incorporation of real probability distributions
- Stochastic quantities "for free": mean, standard deviation
 - Different evaluation of PCE data
 - Aggregation of ensemble not required

PCE details

Model response: projection on polynomial basis [Ashraf 2013]

More details in [Oladyshkin 2012]

Computation of PCE data

- Different techniques to obtain expansion coefficients c_i
 - Intrusive techniques modification of simulation code
 - Non-intrusive techniques simulation is black box
- Here: non-intrusive probabilistic collocation method (PCM)
- n_c simulation runs

 n_{c}

 collocation points from most probable region of input parameter distribution

$$n_c = \frac{(d+n)!}{d!\,n!}$$

$$\Gamma_c - \sum_{i=1}^{N_c} c_i \Pi(\Theta_c) = 0$$
 Γ_c - response values Θ_c - collocation points

PCE data and visualization

- Field of expansion coefficients
- Evaluate polynomials with coefficients and input parameters to obtain result n_{-}

$$\Gamma(\mathbf{x}, t, \Theta) \approx \sum_{i=1}^{n_c} c_i(\mathbf{x}, t) \cdot \Pi_i(\Theta) \qquad \Pi_i(\Theta) = a_{0,i} + a_{1,i}$$

- PCE data on GPU, standard ray casting approach
- 40 fps on middle class machine (818 x 466 viewport)

$a_i\theta_n + a_{2,i}\theta_n^2 \dots$

Visualization

- Different quantities
 - CO₂ Saturation
 - Pressure
 - Std. deviation
- Interactivity
 - View settings
 - Time series
 - Input parameters
- Averaging of parameters
- Rainbow color map engineers like it ;-)

Experiences

- Experts
 - Standard: static snapshots, ROIs, Plots \rightarrow no interactivity
 - Now: interactive exploration
- Public
 - Open house events
 - Visitors played with application
 - Initiated discussion about technology
 - However: no direct relation to peoples' everyday life

Decision making

- Trade-off: accuracy vs simplicity
- Interactivity on model level important
- Experts
 - Explore model
 - Deeper understanding
- Non-experts
 - Simple visualization
 - Simple interface
 - Interactivity
- Decision communication?

Do it!

Conclusion

- PCE is interesting tool
- Full ensemble accessible by visualization
- PCE approaches potential basis for novel uncertainty visualization techniques
- Increasing number of PCE applications, e.g., emergency management simulations
- Interactive visualization useful for experts and public

Thank you. Questions?

References:

[Ashraf 2013] M. Ashraf, S. Oladyshkin, and W. Nowak. *Geological storage of CO2: Application*, feasibility and efficiency of global sensitivity analysis and risk assessment using the arbitrary polynomial chaos. International Journal of Greenhouse Gas Control, 19(0):704–719, 2013.

[Oladyshkin 2011] S. Oladyshkin, H. Class, R. Helmig, and W. Nowak. A concept for datadriven uncertainty quantification and its application to carbon dioxide storage in geological formations. Advances in Water Resources, 34(11):1508–1518, 2011.

[Oladyshkin 2012] S. Oladyshkin and W. Nowak. *Data-driven uncertainty quantification using* the arbitrary polynomial chaos expansion. Reliability Engineering & System Safety, 106:179 - 190, 2012.

[Wiener 1938] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):pp. 897–936, 1938.

