

Uncertainty in weather prediction Where does it come from and what does it look like?

George C. Craig

Meteorologisches Institut Fakutät für Physik, LMU München

sches Zentrun t- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Outline

- 1. A meteorologist's picture of weather
- 2. Quantitative forecasting
- 3. Uncertainty and ensembles of forecasts
- 4. Probabilities and decision making
- 5. Why we need new ways of looking at data

epic.gsfc.nasa.gov 2015-10-22 19:00:18 GMT

A modern coneptual model

Martinez-Alvarado et al. Monthly Weather Review 2014

Warm conveyor belt 2

Three-dimensional flow of air

Warm front

Warm conveyor belt outflow

Numerical weather prediction

Measuring forecast skill

1981

- Root mean square error (here 500 hPa geopotential, NH extratropics)
- Reference forecast persistence
- Skill score
 - $-100\% \rightarrow no error$
 - $-0\% \rightarrow$ no better than persistence

Improvement of 1 day per decade

Haiden et al., ECMWF, 2014

2014

Forecast lead time

A bad forecast!

forecast for New York

Storm missed New York, ...

Predictability and chaos

Simple dynamical system with three degrees of freedom ... but nonlinear Lorenz (1963)

Uncertainty in initial conditions grows rapidly

can lead to complete loss of predictability in finite time

... but not always

Palmer 2014

Ensemble prediction systems

Slingo and Palmer 2011

50 forecasts from ECMWF

High Res.

Meteogram

Forecast for Chicago from Friday

> Precipitation - scenarios

Temperature - spread increases with time

Forecast is the probability of an event

What is a good probabilistic forecast?

curves is measure (continuous ranked

Measuring probabilistic forecast skill

- CRPS (here 850 hPa temperature, NH extratropics)
- Reference forecast persistence
- Skill score
 - $-1 \rightarrow no error$
 - $-0 \rightarrow$ no better than persistence

Rapid improvement - but is it useful?

Haiden et al., ECMWF, 2014

A toy decision model

A static cost-loss model

- L: Loss due to an adverse event
- C: *Cost* of an action protecting against the loss. Arises whether or not event occurs
- C < L (or never take action!)

Decision strategy

Take decisions so that expenses are minimized over the long term

Cost-loss ratio determines how to react to a forecast

Expenses:

Different users have different cost-loss ratios

- Low C/L, e.g. energy trader
- High C/L, e.g. Mayor of New York

(Based on notes by Christoph Frei, Meteoswiss)

Potential economic value

- PEV for extreme precipitation (24 hr accumulation for Europe above 98th percentile)
- Reference forecast climatology
- Skill score
 - $-1 \rightarrow$ expenses as low as for perfect forecast
 - $-0 \rightarrow$ no better than climatology

For some users, a deterministic forecast gives the best probabilites

Ensemble forecast

Single highresolution forecast

Haiden et al., ECMWF, 2014

The need for new ways of looking at data

yes

no

taken

<u>.</u>0

Decision

- Decision making ... based on
- Probabilistic forecasts ... based on
- Ensembles of scenarios ... based on
- Numerical prediction models ... based on
- Conceptual models that encapsulate physical understanding

How can we understand probabilistic and ensemble information using physically-based concepts and conceptual models?

